2017年6月6日(火)
While this is normally considered detrimental
While this is normally considered detrimental for plasmonic applications like biomolecular sensing, SERS enhancement and those requiring long plasmon propagation lengths, this effect can be used advantageously for plasmonic structural colour as structures that absorb broad wavelengths of light are able to produce colours not possible from those with only narrow absorption resonances. To demonstrate the impact of rms surface roughness on the colour reflected from the nanostructure, we perform FDTD simulations of the periodic nanowell array by changing the amplitude of a uniform random height variation about the top surface of the alu<a href=""></a>minium film while maintaining a constant lateral correlation length of 15?nm. We then use the resulting spectra to predict a reflected colour through the 1932 International Commission on Illumination (CIE) colour space and colour matching functions. Further details about the surface generation and simulations can be found in the Methods section. Here, we approximate the LC region as a perfect anisotropic crystal with the slow axis (ne) parallel to the surface and at 45° with respect to a periodicity vector of the nanowell array (homogeneous LC alignment). In reality, the LC director aligns to the contours of the aluminium surface, resulting in a complex LC director tensor dependent on the local topography of the surface. However, to isolate the effects of rms surface roughness on the GCSP resonance alone, we choose to simplify this LC layer and leave it constant for the purposes of the numerical demonstration in Fig. 2a,b. By separately injecting light polarized parallel and perpendicular to this diagonal, we also isolate the fundamental modes of the plasmonic film and remove any bulk retardation/polarization rotation effects of the LC. The results for incident LED High Bay Light polarized perpendicular to the LC long-axis (90°) are shown in Fig. 2a while incident light polarized parallel (0°) to the LC orientation is shown in Fig. 2b. Line colours are determined by the CIE colour matching functions and are cascaded to show the influence of rms surface roughness on resonance location (solid black lines) and full-width-half-maximum (dotted black lines). At low values of surface roughness, the plasmonic resonance shifts less than 20?nm upon incident polarization rotation, resulting in a minute colour change. However, as the roughness of the aluminium increases, the parallel resonance red shifts more than the perpendicular case, causing a greater colour shift between the two polarization states. We explain this phenomenon with the following argument: the ?LC term of the above equation can be thought of as an effective index experienced by the plasmonic mode. For isotropic and uniform surrounding media, this term reduces to the dielectric constant of the medium. However, for anisotropic media, this term becomes an overlap integral between the plasmonic field tensor and the surrounding media’s dielectric tensor. As plasmonic fields near the metallic interface are normal to the surface, plasmon resonances depend largely on the surface normal component of the surrounding refractive index. Rough films will have local regions where the surface norm has an increased x or y component compared to the global norm. This gives the in-plane components of the surrounding media a greater contribution to the effective refractive index of the GSCP resonance. In the current case, where the surrounding media is a uniaxial crystal oriented parallel to the aluminium surface, this creates a surface roughness induced polarization dependence of the plasmonic resonance.<a href=""></a><a href=""></a><a href=""></a><a href=""></a><a href=""></a><a href=""></a><a href=""></a><a href=""></a><a href=""></a><a href=""></a>
コメント(0件) | コメント欄はユーザー登録者のみに公開されます |
コメント欄はユーザー登録者のみに公開されています
ユーザー登録すると?
- ユーザーさんをお気に入りに登録してマイページからチェックしたり、ブログが投稿された時にメールで通知を受けられます。
- 自分のコメントの次に追加でコメントが入った際に、メールで通知を受けることも出来ます。