2017年6月6日(火)
Anapole amplification by stimulated
We observe that the anapole state is not a resonance of the system, therefore it is not possible to associate intuitive quantities such as quality factors which are employed in the description of resonant laser cavities. Resonant states are in fact observed in the spectral response as Lorentzian energy peaks with full width half maximum equal to ω0/Q, with ω0 being the resonant frequency. An anapole state does not possess a Lorentzian shape and is conversely observed in points of the spectrum where the scattering cross-section vanishes.
Anapole amplification by stimulated emission of radiation
We investigated the process of amplification of anapoles through stimulated emission by the Maxwell–Bloch finite-difference time-domain (MB-FDTD) (see Methods). This technique has proven to furnish extremely realistic results that have been verified against many experiments38,39,40,41. In our simulations, we modelled the exact dispersion curve of the In0.15Ga0.85As (see Supplementary Fig. 1), and we assumed a Lorentzian-shaped gain profile with a dephasing time of τ=40?ps, whose value has been experimentally measured in refs 18, 34.
Full size image
The advent of electric light has given us much greater control over the light-dark cycle to which we are exposed and choice over when we sleep by delaying bed-time. Wake-time is often triggered by alarm clocks set to comply with social demands, such as work schedules and school start-times. In addition, humans in industrialized societies spend much more time inside, thereby reducing day-time LED Flood Light exposure by an order of magnitude relative to pre-industrialized societies20,21,22. This modern lifestyle is assumed to be associated with a mismatch between our sleep schedules and endogenous circadian rhythmicity. During work days we wake up early, out of phase with our circadian wake propensity rhythm, and obtain insufficient sleep. During ‘free days’ we sleep later, closer to our natural circadian wake propensity rhythm, and also longer, to pay off accrued sleep debt. This weekly pattern of sleeping in and out of phase with circadian rhythmicity has been coined ‘social jet-lag’23, drawing parallels between this weekly pattern of misalignment and the misalignment induced by rapid travel across time zones (jet-lag). A schematic diagram contrasting light profiles, the circadian wake propensity and sleep homeostat and resultant sleep timing is shown in Fig. 1 for two light profiles, one representative of pre-industrialized societies and one that is typical of modern life.
Anapole amplification by stimulated emission of radiation
We investigated the process of amplification of anapoles through stimulated emission by the Maxwell–Bloch finite-difference time-domain (MB-FDTD) (see Methods). This technique has proven to furnish extremely realistic results that have been verified against many experiments38,39,40,41. In our simulations, we modelled the exact dispersion curve of the In0.15Ga0.85As (see Supplementary Fig. 1), and we assumed a Lorentzian-shaped gain profile with a dephasing time of τ=40?ps, whose value has been experimentally measured in refs 18, 34.
Full size image
The advent of electric light has given us much greater control over the light-dark cycle to which we are exposed and choice over when we sleep by delaying bed-time. Wake-time is often triggered by alarm clocks set to comply with social demands, such as work schedules and school start-times. In addition, humans in industrialized societies spend much more time inside, thereby reducing day-time LED Flood Light exposure by an order of magnitude relative to pre-industrialized societies20,21,22. This modern lifestyle is assumed to be associated with a mismatch between our sleep schedules and endogenous circadian rhythmicity. During work days we wake up early, out of phase with our circadian wake propensity rhythm, and obtain insufficient sleep. During ‘free days’ we sleep later, closer to our natural circadian wake propensity rhythm, and also longer, to pay off accrued sleep debt. This weekly pattern of sleeping in and out of phase with circadian rhythmicity has been coined ‘social jet-lag’23, drawing parallels between this weekly pattern of misalignment and the misalignment induced by rapid travel across time zones (jet-lag). A schematic diagram contrasting light profiles, the circadian wake propensity and sleep homeostat and resultant sleep timing is shown in Fig. 1 for two light profiles, one representative of pre-industrialized societies and one that is typical of modern life.
コメント(0件) | コメント欄はユーザー登録者のみに公開されます |