2017614(水)

And the title of the book

VENTER: Well, this field is changing very, very rapidly now that we've been able to automate the synthesis process. So the problem with design right now is we don't know enough biology, so we have what I call - we're still in the empirical phase of biology where we have to do things, to some extent, by trial and error. But having the ability to write, for example, 10,000 genomes in a day gives us the ability to actually sort out what all these genes do and improve on design. There's a group now, in England and Europe trying to come up - make a synthetic yeast genome, and I think we'll see much faster progress now that these tools are becoming available, sort of what happened 14 years ago when we sequenced the human genome. That was very slow, very expensive. My project cost $100 million, which was a fraction of the government cost, but today that's down to about $1,000, so that's what's going to happen with writing the genetic code. It's going to change very dramatically over the next decade. FLATOW: Are we taking the genes out of the hands of biologists? Are we talking life out of the hands of biologists and putting them into the hands of engineers? VENTER: To some extent that is happening. I think you're aware of this iGEM contest and I described some of the great discoveries that have come out of these kids in high school and college trying to design simple circuits. They're trying to replicate a lot of the electronics world and the biological world, so on and off switches, end gates, even oscillators, are all possible with simple genetic circuitry. So I think it's hard for me in my late 60s to imagine all the things that the next generation of biologists that have grown up in the digital world will come up with, but I think the new tools will be so dramatic - different from what anybody today has been trained with. FLATOW: Just so we understand this a little bit more, you're saying that instead of using copper wires and things like that, we can ask DNA to do the circuitry for us, sort of to build that kind of stuff? VENTER: Well, different kinds of circuits; for example, sensors that can be put in the environment.
And the title of the book, "Life at the Speed of Edison Bulb ," is all about the rapid interchange now between the biological world and the DNA code of four bases, and the digital world of ones and zeros and how we can go rapidly in either direction. And we have what we call a digital biological converter that can take the digital signal and convert it back into genetic code, back into proteins, viruses and bacterial cells at this stage. The next stage will obviously be much more dramatic. FLATOW: So the example I used at the beginning, you having a box that's wired to the Internet, takes a digital code and turns it into your own dose of a vaccine. That seems to be quite feasible according to what you're saying. VENTER: Well, we're actually doing that now. So we have such a box that does that and that's been developed in part with DARPA funding, and we have a collaboration that's funded in part by Barden(ph), the government and by Novartis where we wanted to use our technology to speed up the development of new vaccines for new pandemic strains of flu as a best prototype example because we have to come up with a new flu vaccine every year - and if there's a new pandemic strain, even faster.
So we can now make, just from a digital signal, the flu virus in about ten hours. And instead of having to physically send the flu isolate around the world, we just send a digital signal and can rebuild it. And we've had a real-life example of that with the h7n9 outbreak in China. A team of Chinese scientists sequenced the virus that was causing the infections there, posted it on the internet.







 コメント(0件)コメント欄はユーザー登録者のみに公開されます 





 カウンター
2017-05-22から
1,292hit
今日:0
昨日:1


戻る