2017年5月19日(金)
Precision parts machining shops are increasingly faced
Precision parts machining shops are increasingly faced with the need to accept higher-mix/lower-volume work. Putting a job on a machine tool and running it for long periods of time is not as common as it used to be, and the definition of medium- and high-volume lot sizes has changed.
To maximize production efficiency, shops look to shorten the time required to change-over a machine tool from one job to another. In a turning application, one area in which a shop can save time is workholding, generally found in the form of universal clamping devices such as the three-jaw chuck. And one practical solution is a quick-change interface.
Changing jaw chucks on lathes has always been time consuming, but some products are geared towards reducing this bottleneck. Learn about Driving System
, designed for any process requiring frequent change-over, that can reduce the time needed for replacing a three-jaw chuck from 45 minutes to 30 seconds for single-part and small-series production runs.
Because of its versatility, Swiss turning has found its way deep into the precision turned parts market. To make the most of this technology, a look at workholding considerations is in order.
For the most part, workholding on a Swiss is about collets. On a conventional fixed headstock lathe, the collet and spindle are fixed. They function as a rotary axis only. The Swiss-type moving headstock uses the spindle as both a rotary and linear axis. This design allows for very close coupling of the cross-fed cutter and the point of maximum workpiece support, which is nearest the spindle nose—on a Swiss, the guide bushing.
To maximize production efficiency, shops look to shorten the time required to change-over a machine tool from one job to another. In a turning application, one area in which a shop can save time is workholding, generally found in the form of universal clamping devices such as the three-jaw chuck. And one practical solution is a quick-change interface.
Changing jaw chucks on lathes has always been time consuming, but some products are geared towards reducing this bottleneck. Learn about Driving System
, designed for any process requiring frequent change-over, that can reduce the time needed for replacing a three-jaw chuck from 45 minutes to 30 seconds for single-part and small-series production runs.Because of its versatility, Swiss turning has found its way deep into the precision turned parts market. To make the most of this technology, a look at workholding considerations is in order.
For the most part, workholding on a Swiss is about collets. On a conventional fixed headstock lathe, the collet and spindle are fixed. They function as a rotary axis only. The Swiss-type moving headstock uses the spindle as both a rotary and linear axis. This design allows for very close coupling of the cross-fed cutter and the point of maximum workpiece support, which is nearest the spindle nose—on a Swiss, the guide bushing.
| コメント(0件) | コメント欄はユーザー登録者のみに公開されます |
コメント欄はユーザー登録者のみに公開されています
ユーザー登録すると?
- ユーザーさんをお気に入りに登録してマイページからチェックしたり、ブログが投稿された時にメールで通知を受けられます。
- 自分のコメントの次に追加でコメントが入った際に、メールで通知を受けることも出来ます。
